
COLLAGENE

COME SIAMO FATTI

Il corpo umano è composto da (1) 62% acqua 16% grasso (variabile tra uomo e donna) 16% proteine 6% minerali 1% carboidrati

COSA SONO LE PROTEINE

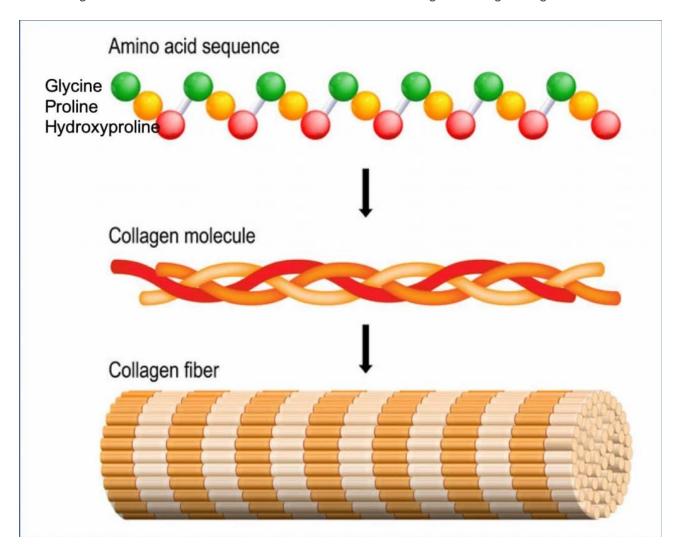
Le proteine sono macromolecole costituite da catene di aminoacidi. Immaginatele come una collana di perle, dove le perle sono appunto i diversi aminoacidi.

Nel nostro corpo ci sono 20 aminoacidi, 9 dei quali essenziali ovvero che è necessario assumere con il cibo. Per quanto riguarda gli altri 11 aminoacidi, il corpo se li ha bisogno li produce da solo.

COLLAGENE

Il collagene è la proteina più abbondante del corpo umano (30%) e si trova soprattutto nella pelle, ma anche in muscoli, tendini, vasi sanguigni, cartilagini, denti, ossa e cornee.

È come se il collagene fosse una "colla" che sostiene le cellule che compongono questi tessuti. Pensate che, tolta l'acqua, l'80% del peso della pelle è costituito da collagene!


Ci sono almeno 29 tipi di collagene nel corpo umano, ma il 90% è collagene di tipo I. Tutte le tipologie di collagene sono formate da 19 aminoacidi, ma c'è una prevalenza di 3 aminoacidi: glicina, prolina e idrossiprolina.

Ora il ragionamento è molto semplice:

- 1) il collagene è la principale proteina presente nel nostro corpo
- 2) per sintetizzare il collagene il nostro corpo ha bisogno di determinati aminoacidi
- 3) se gli fornisco esattamente quegli aminoacidi gli rendo la vita più semplice (ricordate che alla natura non piace fare fatica: se la osservate noterete che cerca sempre la strada più semplice perché così risparmia energia)

Visto che il collagene è costituito principalmente da glicina, prolina e idrossiprolina, come posso fornire proprio questi aminoacidi al mio corpo? Mangiando collagene!

Il collagene esiste solo nel mondo animale. Non esiste un collagene di origine vegetale.

FONTI DI COLLAGENE

Oggi la nostra alimentazione è povera di collagene in quanto non mangiamo più gli alimenti che lo contengono in abbondanza: cotenna (in assoluto l'alimento più ricco di collagene), piedini e orecchie di suino, zampe e pelle di pollo, nervetti, coda, etc...

PRODUZIONE DI COLLAGENE

Il collagene viene prodotto a partire dal procollagene che viene sintetizzato dal corpo unendo glicina e prolina. Questo processo utilizza vitamina C quindi è bene che la nostra alimentazione ne sia ricca.

Un'altro importante minerale necessario alla produzione di collagene è il rame di cui il cacao in polvere è un ottima fonte! Importante anche lo zinco che troviamo anch'esso nel cacao in polvere.

Infine il corpo ha bisogno anche di altri aminoacidi per produrre il collagene: le fonti migliori sono carne, pesce e uova che vengono definite "proteine nobili" in quanto contengono tutti gli aminoacidi esseziali nelle proporzioni necessarie.

BENEFICI

Negli ultimi anni il collagene è stato il protagonista di numerosi studi scientifici che hanno osservato questi benefici:

- 1) riduce le rughe (2)
- 2) aumenta l'elasticità della pelle (3)
- 3) riduce la cellulite (4)
- 4) promuove la crescita di unghie sane (5)
- 5) diminuisce il dolore alle articolazioni (6,7)
- 6) attenua la perdita ossea (8) e migliora la densità ossea (9)
- 7) aumenta la massa muscolare (10,11)
- 8) aiuta a combattere l'arterioscelrosi (12)

GLICINA

Decisamente tutti benefici molto interessanti, però la mia passione per il collagene nasce dal fatto che è l'alimento in assoluto più ricco dell'aminoacido glicina. Perché questo è importante? Perchè la quantità di glicina che consumiamo con la dieta determina la quantità di glutatione che il nostro corpo sarà in grado di produrre. Il glutatione è uno degli antiossidanti più potenti del nostro corpo (13) e combattere l'ossidazione è fonamentale per la nostra salute.

Altri benefici legati alla glicina (13)

- protegge il sistema cardiovascolare
- controlla l'infiammazione
- migliora il sonno
- protegge il fegato
- controlla la sindrome metabolica
- contrasta la glicazione delle proteine
- controlla il diabete

E poi c'è una cosa super interessante: uno studio giapponese del 2015 pubblicato su Nature (14) dove si è dimostrato che fornire glicina ai mitocondri di cellule di persone anziane correggeve i difetti causati dall'invecchiamento e praticamente li ringiovaniva!

Questo ero uno studio in vitro (effettuato in provetta su campioni di tessuti), quindi c'è una grande differenza rispetto agli studi effettuati in-vivo (ovvero sugli esseri viventi). Comunque trovo che i risultati di questo studio siano affascinanti e furono l'inizio del mio grandissimo amore per il collagene!

COSA DANNEGGIA IL COLLAGENE

Zuccheri (carboidrati): causano la glicazione delle fibrille di collagene impedendone la riparazione (15) Inquinamento Eccessiva esposizione al sole Tabacco Alcol

IL NOSTRO COLLAGENE

Il nostro collagene proviene da bovini allevati al pascolo per tutta la loro vita.

Ho contattato tutti i produttori di collagene che sono riuscita a trovare e nessuno garantisce che gli animali siano alimentati a pascolo e fieno (grass-fed) per tutta la loro vita. Nelle ultime settimane vengono dati loro altri mangimi che servono per farli ingrassare. Questa fase solitamente viene effettuata nei "feedlot" ovvero dei recinti dove i bovini passano le loro ultime settimane.

I nostri bovini invece ricevono questi mangimi al pascolo. Dal mio punto di vista questo è un bene perchè restano liberi per tutta la loro vita. I mangimi che vengono utilizzzati per i nostri bovini sono insilati di mais, canna da zucchero e fieno.

Il nostro collagene contiene collagene di tipo I e tipo III ma principalmente tipo I.

BIBLIOGRAFIA

- 1. https://www.britannica.com/science/human-nutrition/BMR-and-REE-energy-balance
- 2. https://pubmed.ncbi.nlm.nih.gov/24401291/
- 3. https://pubmed.ncbi.nlm.nih.gov/23949208/
- 4. https://pubmed.ncbi.nlm.nih.gov/26561784
- 5. https://pubmed.ncbi.nlm.nih.gov/28786550
- 6. https://pubmed.ncbi.nlm.nih.gov/17076983/
- o. https://pubmed.ncbi.him.him.gov/17070303/
- 7. https://pubmed.ncbi.nlm.nih.gov/18416885/
- 8. https://pubmed.ncbi.nlm.nih.gov/25314004/
- 9. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5793325/
- 10. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6566884/
- 11. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4594048/
- 12. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5429168/
- 13. https://pubmed.ncbi.nlm.nih.gov/29559876/
- 14. https://www.nature.com/articles/srep10434
- 15. https://www.nature.com/articles/s41598-020-60250-9